MATHEMATICS EXAMINATION (MINOR)

EXERCISE 1 : STUDY OF AN OPERATOR

Let $C^0(\mathbb{R})$ be the vector space of continuous functions $f : \mathbb{R} \to \mathbb{R}$ and $C^{\infty}(\mathbb{R})$ be its subspace consisting of smooth functions (that is those having derivatives at all order). We wish to study an operator $L : C^0(\mathbb{R}) \to C^0(\mathbb{R})$ defined as follows : given a function $f : \mathbb{R} \to \mathbb{R}$ we set $L(f) : \mathbb{R} \to \mathbb{R}$ to be the function given, for any $x \in \mathbb{R}$, by

$$L(f)(x) = f\left(\frac{x+1}{2}\right) + f\left(\frac{x}{2}\right).$$

1. Prove that $C^{\infty}(\mathbb{R})$ is stable by L, that is if $f \in C^{\infty}(\mathbb{R})$, then $L(f) \in C^{\infty}(\mathbb{R})$.

2. Given $\lambda \in \mathbb{R}$, we denote by E_{λ} the eigenspace of smooth functions with eigenvalue λ , that is the subspace of those functions $f \in C^{\infty}(\mathbb{R}, \mathbb{R})$ such that

$$\forall x \in \mathbb{R}, \quad L(f)(x) = \lambda f(x).$$

(a) Let f be in E_{λ} with $|\lambda| > 2$ and let $a \ge 1$. Set

$$M_a = \sup_{x \in [-2a, 2a]} |f(x)|.$$

- i. Prove that, for all $x \in [-2a, 2a]$ we have $|L(f)(x)| \leq 2M_a$.
- ii. Prove that f = 0.
- (b) Assume now $\lambda \in [-2, 2] \setminus \{0\}$ and f is in E_{λ} .
 - i. Prove that the derivative f' of f is an eigenfunction. Determine the eigenvalue of f'.
 - ii. Deduce that f is a polynomial function.
- 3. We let $(P_n)_{n \in \mathbb{N}}$ be the sequence of polynomial functions given by $P_0(x) = 1$ and

$$P_{n+1}(x) = (n+1) \left(\int_0^x P_n(t) \, dt - \int_0^1 \left(\int_0^u P_n(t) \, dt \right) \, du \right).$$

and let also $(H_n)_{n\in\mathbb{N}}$ be the sequence of polynomial functions given by

$$H_n(x) = 2^{1-n} L(P_n)(x) = 2^{1-n} \left(P_n\left(\frac{x+1}{2}\right) + P_n\left(\frac{x}{2}\right) \right).$$

(a) Prove that $H_0(x) = 1$ and that for $n \ge 1$ and $x \in \mathbb{R}$ one has

(i)
$$H'_n(x) = nH_{n-1}(x)$$

(ii) $\int_0^1 H_n(t) dt = 0.$

(b) Deduce that $H_n = P_n$ for all n.

4. Deduce that for any $i \in \mathbb{N}$, there is a non-zero function f_i such that f_i has eigenvalue 2^{1-i} .

EXERCISE 2 : QUASICOMMUTING MATRICES

We work over the field \mathbb{C} of complex numbers. Let ω be a complex number. If n is a positive integer and A, B are two matrices in $M_n(\mathbb{C})$, we say that A and $B \omega$ -commute if

$$AB = \omega BA$$

1. (a) Prove that

and

$$A = \begin{pmatrix} 1 & 0\\ 0 & -1 \end{pmatrix}$$
$$B = \begin{pmatrix} 0 & 1\\ 1 & 0 \end{pmatrix}$$

-1-commute.

- (b) Assume that A and B ω -commute. Let p and q be two nonnegative integers. Show that A^p and $B^q \omega^{pq}$ -commute.
- (c) Assume that A and B ω -commute. Let p, q, r and s be nonnegative integers. Find a complex number λ such that $A^p B^q$ and $A^r B^s \lambda$ -commute.
- 2. (a) Show that there exist polynomials $Q_{k,N} \in \mathbb{C}[X]$ such that if ω is any complex numbers and $A, B \omega$ -commute, the following holds

$$(A+B)^N = \sum_{k=0}^N Q_{k,N}(\omega) B^k A^{N-k}.$$

What is the value of $Q_{k,N}$ at 0? At 1?

(b) Let N be a nonnegative integer. We define a polynomial $P_N \in \mathbb{C}[X]$ by the formula

$$P_N(X) = \prod_{r=1}^N (1 + X + \dots + X^{r-1}).$$

Suppose $k \leq N$. Show that P_k divides P_N .

(c) Using induction on N, show that

$$P_k P_{N-k} Q_{k,N} = P_N.$$

(d) Assume that ω is a primitive N-th root of unity, that is, $\omega^N = 1$ and $\omega^k \neq 1$ for all k < N. Show that

$$(A+B)^N = A^N + B^N$$