Mathematics examination (minor)

ExERCISE 1:Study of AN Operator

Let $C^{0}(\mathbb{R})$ be the vector space of continuous functions $f: \mathbb{R} \rightarrow \mathbb{R}$ and $C^{\infty}(\mathbb{R})$ be its subspace consisting of smooth functions (that is those having derivatives at all order). We wish to study an operator $L: C^{0}(\mathbb{R}) \rightarrow C^{0}(\mathbb{R})$ defined as follows : given a function $f: \mathbb{R} \rightarrow \mathbb{R}$ we set $L(f): \mathbb{R} \rightarrow \mathbb{R}$ to be the function given, for any $x \in \mathbb{R}$, by

$$
L(f)(x)=f\left(\frac{x+1}{2}\right)+f\left(\frac{x}{2}\right)
$$

1. Prove that $C^{\infty}(\mathbb{R})$ is stable by L, that is if $f \in C^{\infty}(\mathbb{R})$, then $L(f) \in C^{\infty}(\mathbb{R})$.
2. Given $\lambda \in \mathbb{R}$, we denote by E_{λ} the eigenspace of smooth functions with eigenvalue λ, that is the subspace of those functions $f \in C^{\infty}(\mathbb{R}, \mathbb{R})$ such that

$$
\forall x \in \mathbb{R}, \quad L(f)(x)=\lambda f(x)
$$

(a) Let f be in E_{λ} with $|\lambda|>2$ and let $a \geq 1$. Set

$$
M_{a}=\sup _{x \in[-2 a, 2 a]}|f(x)|
$$

i. Prove that, for all $x \in[-2 a, 2 a]$ we have $|L(f)(x)| \leq 2 M_{a}$.
ii. Prove that $f=0$.
(b) Assume now $\lambda \in[-2,2] \backslash\{0\}$ and f is in E_{λ}.
i. Prove that the derivative f^{\prime} of f is an eigenfunction. Determine the eigenvalue of f^{\prime}.
ii. Deduce that f is a polynomial function.
3. We let $\left(P_{n}\right)_{n \in \mathbb{N}}$ be the sequence of polynomial functions given by $P_{0}(x)=1$ and

$$
P_{n+1}(x)=(n+1)\left(\int_{0}^{x} P_{n}(t) d t-\int_{0}^{1}\left(\int_{0}^{u} P_{n}(t) d t\right) d u\right)
$$

and let also $\left(H_{n}\right)_{n \in \mathbb{N}}$ be the sequence of polynomial functions given by

$$
H_{n}(x)=2^{1-n} L\left(P_{n}\right)(x)=2^{1-n}\left(P_{n}\left(\frac{x+1}{2}\right)+P_{n}\left(\frac{x}{2}\right)\right)
$$

(a) Prove that $H_{0}(x)=1$ and that for $n \geq 1$ and $x \in \mathbb{R}$ one has
(i) $H_{n}^{\prime}(x)=n H_{n-1}(x)$,
(ii) $\int_{0}^{1} H_{n}(t) d t=0$.
(b) Deduce that $H_{n}=P_{n}$ for all n.
4. Deduce that for any $i \in \mathbb{N}$, there is a non-zero function f_{i} such that f_{i} has eigenvalue 2^{1-i}.

ExERCISE 2: QUASICOMMUTING MATRICES

We work over the field \mathbb{C} of complex numbers. Let ω be a complex number. If n is a positive integer and A, B are two matrices in $M_{n}(\mathbb{C})$, we say that A and $B \omega$-commute if

$$
A B=\omega B A
$$

1. (a) Prove that

$$
A=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

and

$$
B=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

-1-commute.
(b) Assume that A and $B \omega$-commute. Let p and q be two nonnegative integers. Show that A^{p} and $B^{q} \omega^{p q}$-commute.
(c) Assume that A and $B \omega$-commute. Let p, q, r and s be nonnegative integers. Find a complex number λ such that $A^{p} B^{q}$ and $A^{r} B^{s} \lambda$-commute.
2. (a) Show that there exist polynomials $Q_{k, N} \in \mathbb{C}[X]$ such that if ω is any complex numbers and $A, B \omega$-commute, the following holds

$$
(A+B)^{N}=\Sigma_{k=0}^{N} Q_{k, N}(\omega) B^{k} A^{N-k}
$$

What is the value of $Q_{k, N}$ at 0 ? At 1 ?
(b) Let N be a nonnegative integer. We define a polynomial $P_{N} \in \mathbb{C}[X]$ by the formula

$$
P_{N}(X)=\Pi_{r=1}^{N}\left(1+X+\ldots+X^{r-1}\right)
$$

Suppose $k \leq N$. Show that P_{k} divides P_{N}.
(c) Using induction on N, show that

$$
P_{k} P_{N-k} Q_{k, N}=P_{N}
$$

(d) Assume that ω is a primitive N-th root of unity, that is, $\omega^{N}=1$ and $\omega^{k} \neq 1$ for all $k<N$. Show that

$$
(A+B)^{N}=A^{N}+B^{N}
$$

